25 research outputs found

    American Mastodon Mitochondrial Genomes Suggest Multiple Dispersal Events in Response to Pleistocene Climate Oscillations

    Get PDF
    Pleistocene glacial-interglacial cycles are correlated with dramatic temperature oscillations. Examining how species responded to these natural fluctuations can provide valuable insights into the impacts of present-day anthropogenic climate change. Here we present a phylogeographic study of the extinct American mastodon (Mammut americanum), based on 35 complete mitochondrial genomes. These data reveal the presence of multiple lineages within this species, including two distinct clades from eastern Beringia. Our molecular date estimates suggest that these clades arose at different times, supporting a pattern of repeated northern expansion and local extirpation in response to glacial cycling. Consistent with this hypothesis, we also note lower levels of genetic diversity among northern mastodons than in endemic clades south of the continental ice sheets. The results of our study highlight the complex relationships between population dispersals and climate change, and can provide testable hypotheses for extant species expected to experience substantial biogeographic impacts from rising temperatures

    Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set

    No full text
    International audienceAbstract Sedimentary ancient DNA (sedaDNA) has been established as a viable biomolecular proxy for tracking taxon presence through time in a local environment, even in the total absence of surviving tissues. SedaDNA is thought to survive through mineral binding, facilitating long-term biomolecular preservation, but also challenging DNA isolation. Two common limitations in sedaDNA extraction are the carryover of other substances that inhibit enzymatic reactions, and the loss of authentic sedaDNA when attempting to reduce inhibitor co-elution. Here, we present a sedaDNA extraction procedure paired with targeted enrichment intended to maximize DNA recovery. Our procedure exhibits a 7.7–19.3x increase in on-target plant and animal sedaDNA compared to a commercial soil extraction kit, and a 1.2–59.9x increase compared to a metabarcoding approach. To illustrate the effectiveness of our cold spin extraction and PalaeoChip capture enrichment approach, we present results for the diachronic presence of plants and animals from Yukon permafrost samples dating to the Pleistocene-Holocene transition, and discuss new potential evidence for the late survival (~9700 years ago) of mammoth ( Mammuthus sp. ) and horse ( Equus sp. ) in the Klondike region of Yukon, Canada. This enrichment approach translates to a more taxonomically diverse dataset and improved on-target sequencing

    Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA

    No full text
    The temporal and spatial coarseness of megafaunal fossil records complicates attempts to to disentangle the relative impacts of climate change, ecosystem restructuring, and human activities associated with the Late Quaternary extinctions. Advances in the extraction and identification of ancient DNA that was shed into the environment and preserved for millennia in sediment now provides a way to augment discontinuous palaeontological assemblages. Here, we present a 30,000-year sedimentary ancient DNA (sedaDNA) record derived from loessal permafrost silts in the Klondike region of Yukon, Canada. We observe a substantial turnover in ecosystem composition between 13,500 and 10,000 calendar years ago with the rise of woody shrubs and the disappearance of the mammoth-steppe (steppe-tundra) ecosystem. We also identify a lingering signal of Equus sp. (North American horse) and Mammuthus primigenius (woolly mammoth) at multiple sites persisting thousands of years after their supposed extinction from the fossil record

    Ancient Mitogenomes Reveal the Evolutionary History and Biogeography of Sloths

    Get PDF
    International audienceLiving sloths represent two distinct lineages of small-sized mammals that independently evolved arboreality from terrestrial ancestors. The six extant species are the survivors of an evolutionary radiation marked by the extinction of large terrestrial forms at the end of the Quaternary. Until now, sloth evolutionary history has mainly been reconstructed from phylogenetic analyses of morphological characters. Here, we used ancient DNA methods to successfully sequence 10 extinct sloth mitogenomes encompassing all major lineages. This includes the iconic continental ground sloths Megatherium, Megalonyx, Mylodon, and Nothrotheriops and the smaller endemic Caribbean sloths Parocnus and Acratocnus. Phylogenetic analyses identify eight distinct lineages grouped in three well-supported clades, whose interrelationships are markedly incongruent with the currently accepted morphological topology. We show that recently extinct Caribbean sloths have a single origin but comprise two highly divergent lineages that are not directly related to living two-fingered sloths, which instead group with Mylodon. Moreover, living three-fingered sloths do not represent the sister group to all other sloths but are nested within a clade of extinct ground sloths including Megatherium, Megalonyx, and Nothrotheriops. Molecular dating also reveals that the eight newly recognized sloth families all originated between 36 and 28 million years ago (mya). The early divergence of recently extinct Caribbean sloths around 35 mya is consistent with the debated GAARlandia hypothesis postulating the existence at that time of a biogeographic connection between northern South America and the Greater Antilles. This new molecular phylogeny has major implications for reinterpreting sloth morphological evolution, biogeography, and diversification history
    corecore